
Object Space Lighting

Dan Baker
Founder, Oxide Games

Ashes of the Singularity

Nitrous Engine/Oxide Games

● New studio founded from
industry vets – Firaxis,
Zenimax, Stardock

● Ground up, custom engine
● Several titles in development

using Nitrous, including Star
Control

Types of Renderers
● Forward Renderer

● Many DX8-DX9 titles
● Still many DX11 titles
● Unreal 3.0

● Deferred Render
● X360+, PS3, DX11
● Unity, Frostbite

● Forward+ Renderer

Forward Rendering

● Forward rendering, triangles are
rasterized as they would appear directly
into the back buffer

● Lighting, and shading occur at time of
rasterization.

● “Just in time shading.”

ForwardPros/Cons
● Pros:

● Straightfoward
● MSAA works works well
● Decouple systems, easy to add in new material types
● Alpha blending is simple

● Cons-
● No shader anti-aliasing
● Lights are (typically) bound with the materials

Deferred

Defered Renders, shading does not occur
during rasterization
Instead, important shading parameters
such as normal, albedo, position, etc are
saved into a deep back buffer
The back buffer is then shaded

Deferred
● Pros

● Stable performance characteristics
● Lighting can be semi-decoupled from shading
● Lots of techniques like SSAO can be used

● Cons
● Terrible intrinsic aliasing problems. Not solvable
● Limited number of materials possible
● Alpha blending is complex or impossible for certain classes

of materials

Forward+/Hybrid

Forward + is a general term for hybrid
techniques. Forward+ renders use multiple
passes to calculate some of the scene data
that is used in Deferred
Main rendering is done as forward+
Most engines are hybrid

Forward +

● Pros
● Most of the advantages of a forward renderer
● Can also decouple lights from materials

● Cons
● Still doesn’t solve aliasing problems related to

shader aliasing
● Complex to implement

Object space

● DX12 Renderer!
● In deferred, shading takes place after

rasterization
● In forward and Forward +, shading

occurs during rasterization
● In object space, shading occurs before

rasterization

Problems trying to solve
● Shader anti-aliasing/Stability

● High spec powers and discontinuities in shaders plague us.
● Longer shaders get, the more this is a problem
● LEAN mapping and other techniques are not extensible to more complex materials

● Shade frequency may need to be higher then screen space to get good results
● Shading can be done at different temporal frequency then rasterization
● Materials can be layered
● No limit to number of materials used
● Stable performance – maximum number of shaded samples
● Shading alpha blended materials is important

REYES

Render
Everything
Your
Eye can
See

Object Space Lighting
● Inspired by REYES
● High level concept – shading occurs first
● The SPACE of shading is completely different

● Intrinsically better mathematically
● Scene is constructed from shaded sample points
● Details from REYES are very different

Before we begin
● AotS is a physically based renderer
● Underlying Nitrous engine has many services for

PBR, but doesn’t intrinsically force you to be
● Completely determined by the PBR nature of

materials of application. All power rests on
the materials

● Post process services

The Basics
● Game allocates several large texture sheets

● 4kx4k, 16 BPP
● Object rendering broken into 2 passes

● Shading pass
● Raster pass

● Lighting system works similar to Forward +
Style

Random things we can do
● Attach preconvolved BRDF lighting environments, called a

Axial light
● All metals are true specular, no diffuse at all (can’t be

done on deferred because need a unique 3d texture for
each material)

● High spec powers, not a problem
● 1000, 2000x spec powers are stable and look good

Challenges
● All objects must be chartable
● Objects which are close on screen have hugely uneven

texel density
● Quality of Normals matters with high spec powers –

Authoring more precise normals takes effort
● Not an issue if you stick with lower spec powers

● No Vertex Data during shading

What an asset looks like
● Normal Map

(world space)
● Position Map

(lower res)
● AO Map
● Material Mask
● Textcoord Remap

2 Passes
● All objects have a material group
● Material Group consists of

● Materials, as many as artist wants
● Rasterization shader

● Important: Animation must be done twice
● Once during shading to get a position/normal for

shading
● Once during rasterization

Material System

● Internal system called Oxide Shading
Language (OXSL)

● Build on top of HLSL compiler
● Compiled into C++ components during

application compilation

MaterialGroup PHCUnitMaterials
{

DirectRenderResources = ::OSLEngineShaders::OSLResolvedTextures;
DirectRenderVS = DirectRenderVS;
DirectRenderPS = FinalAlphaPS;

MaterialAppResources = PHCUnitsShadeTextures;
MaterialAppParams = AshesShadeData;
MaterialAppGlobals = ::OSLEngineShaders::OSLGlobalParams;
VertexData = AshesVertexData;

MaterialGroupResources = PHCUnitResources;
MaterialGroupResources2= ::AshesAxialLights;

MaterialOSLResources = ::OSLEngineShaders::OSLResources;

CodeBlocks = OSLStandardDirectRenderShaders, DestructionMasks, ConstructionPS;
}

Material System

These shaders
Rasterize to the
screen using the
shaded Object

Materials
Material PaintedMetal : PHCUnitMaterials
{
CodeBlocks = ::OSLEngineShaders::OSLBase,::OSLEngineShaders::LightingFunctions, ::AshesCommonFunctions::AtmosphereFunctions;
MaterialShader = ShadePaintedMetal;
}

Material BareMetal : PHCUnitMaterials
{
CodeBlocks = ::OSLEngineShaders::OSLBase,::OSLEngineShaders::LightingFunctions, ::AshesCommonFunctions::AtmosphereFunctions;
MaterialShader = ShadeMetal;
}

Material Emissive : PHCUnitMaterials
{
CodeBlocks = ::OSLEngineShaders::OSLBase,::OSLEngineShaders::LightingFunctions, ::AshesCommonFunctions::AtmosphereFunctions;
MaterialShader = ShadeEmissive;
}

Material EngineEmissive : PHCUnitMaterials
{
CodeBlocks = ::OSLEngineShaders::OSLBase,::OSLEngineShaders::LightingFunctions, ::AshesCommonFunctions::AtmosphereFunctions;
MaterialShader = ShadeEngineEmissive;
}

Material AnimatedEmissive : PHCUnitMaterials
{
CodeBlocks = ::OSLEngineShaders::OSLBase,::OSLEngineShaders::LightingFunctions, ::AshesCommonFunctions::AtmosphereFunctions;
MaterialShader = ShadeAnimatedEmissive;
}

Retributor

Objects Material layers

Material Masks

An object with it’s layers

An object with it’s layers

An object with it’s layers

An object with it’s layers

An object with it’s layers

Handling lights

● Forward + style
● Scene has small number of directional

lights
● And can have large number of point/spot

lights
● Materials responsible for iterating over

lights

The light Matrix
● Lights in scene are placed into the light matrix
● Fixed level oct tree
● A light can appear multiple times inside the light matrix
● Very fast to use in shader, a handful of texture fetches to find the lights
● Shader iterates over the lights

● Observation – iterating over lights in shader is no longer prohitive. Performance is good
● Observation, performance is mostly related to bandwidth of loading the lighting information

into shader, not making decisions about applying it
● Light Matrix is recomputed every frame
● Can handle many thousands of lights per frame with predictable performance impact
● Light matrix rebuilt every frame, about .3 to .5 ms to build

Overall process
● All objects in game are submitted for shading and rasterization. Queued for

process
● During submission step, the estimated projected area of the object is

calculated. Thus an object requests a certain amount of shading
● During shading, system allocates texture space for all objects which require

shading. If the total request is more then available shading space, all objects
are progressively scaled at shading rate until it fits

● Material shading occurs, processing each material layer for each object.
Results are accumulated into the master shading texture(s)

● MIPS are calculated on master shading texture as appropriate
● Rasterization step: each object references the shading part step. No specific

need that there is a 1:1 correspondence, but this feature is rarely used.

Issues
● Many draw calls can be issued for each object – each material

layer is a batch. Then each object gets rasterized. Approx 2x
number of batches as typical game engine

● D3D12 very useful on cutting out overhead
● Batches are relatively simple

● Allocation of object space can matter a great deal to image
quality

● Decisions for total texel density are decided at an object level.
Objects which have varying density will have issues.

● Objects which are very large on screen
● Terrain

Terrain Materials

Terrain has some unique features
● Shaded before rasterization
● Allows the concept of a Pre-cal

● Unlike a decal, a precal is generated before shading
● Meaning each material layer can decide how to react to

precal
● Scorch marks primary use for this
● Also used to create power lines on map

No Layers

Basin Layer

Dirt Layer

Ice Layer

Snow Layer

Turinium Layer

Terrain

● Terrain is a large continuous mesh
● Can’t be shaded like an object
● Could never afford to place the entire terrain

into a texture – to much offscreen unused
space

● Texel density needs to vary across what’s on
the screen

● Solution: Stitch Map

Stitch Map
● Terrain is going to be quilted together
● The terrain is made of little square patches
● Indirection in raster shader stitches the map

back together
● Loosely similar to Perfect Hashing (Hughes

Hoppe)
● Except recalc every frame, and mesh is

simpler

Generating the stich map
● Terrain has one giant texture where shading samples go

into
● During a frame, each patch of the terrain is projected into

an estimate for area
● Allocated into the shading texture through similar

technique as Object Space renderer
● However, the tiles represent one continues mesh –

Breaking it apart would cause obvious seems
● Stich map is generated

Variable density
● Big trick is to allow each tile to have a unique

resolution
● On the same screen, some tiles may be only

128x128 texels, while some could be 1024x1024
● Terrain system will allocate more texel space to

regions of terrain which are vertical, and need
more space to avoid stretching artifacts

Terrain Stitching

StichMap source

5

21

4

3

6

87 9

Each red cell points
to an entirely
different region of
our shaded
texture, resolutions
may not even
match

How do we blend
between them on
the edges?

Reconstructing the stitch map
ActualTexCoord[0] = MapTexCoord(PageMapLoc[0].xy, PageTexCoord + float2(PageMapOffset[0]),PageMapMIP[0]);

ActualTexCoord[1] = MapTexCoord(PageMapLoc[1].xy, PageTexCoord + float2(PageMapOffset[1]),PageMapMIP[1]);
ActualTexCoord[2] = MapTexCoord(PageMapLoc[2].xy, PageTexCoord + float2(PageMapOffset[2]),PageMapMIP[2]);
ActualTexCoord[3] = MapTexCoord(PageMapLoc[3].xy, PageTexCoord + float2(PageMapOffset[3]),PageMapMIP[3]);
ActualTexCoord[4] = MapTexCoord(PageMapLoc[4].xy, PageTexCoord, PageMapMIP[4]);

float2 DerX = ddx(InputTexCoords * s_RemapTableDims * s_PageRemapTexCoordScale[0].xy);
float2 DerY = ddy(InputTexCoords * s_RemapTableDims * s_PageRemapTexCoordScale[0].xy);

float4 Sample1 = PageMapBackstore.SampleGrad(SS_DEFAULT, float2(ActualTexCoord[0]), DerX*fDirScale[0],
DerY*fDirScale[0]);

float4 Sample2 = PageMapBackstore.SampleGrad(SS_DEFAULT, float2(ActualTexCoord[1]), DerX*fDirScale[1],
DerY*fDirScale[1]);

float4 Sample3 = PageMapBackstore.SampleGrad(SS_DEFAULT, float2(ActualTexCoord[2]), DerX*fDirScale[2],
DerY*fDirScale[2]);

float4 Sample4 = PageMapBackstore.SampleGrad(SS_DEFAULT, float2(ActualTexCoord[3]), DerX*fDirScale[3],
DerY*fDirScale[3]);

Material layers
● Object can have many layers, what if layer is sparce?

● Discarding on a mask early is very fast, hardware good
at aboring entire regions of a texture

● Possible to get better perf by finding the regions for
each material layer that are masked out, but in
practice masking functions are complex and happen in
shaders

Occlusion
● What about occluded pixels?
● In both forward and deferred renderers, one

does not pay the cost of shading non visible
samples

● In our engine, wastage for shaded objects
● Objects which are not visible are culled early in

pipe

More efficient hardware
● Occlusion inefficiences in current design are masked

by increased hardware efficiency
● No wastage on shading for small triangles, e.g. 2x2

stamp problem
● Overall shading throughput is far higher then a

forward renderer.
● Don’t have to pay maximum cost of an uber shader

like deferred
● Simple materials are fast

Other notes
● Any object can bypass the object space lighting system
● Trees, particles which have very simple shaders get no

benefit out of it, thus default back to forward
● Can be intermixed easily with forward renderers

Results
● Initial design point – little doubt in overall quality

improvements
● Primary concern was performance
● Great knobs for controlling performance

● Shading Samples
● Terrain Shading Samples

● Not as dependent on resolution for scaled performance

Performance at Resolution

0

20

40

60

80

100

1080p 1440p 2160p

Fury X

Titan X

Where our frame time goes
Sales Unit Shade

Terrain Shade

Rasterize

Lighting/Shad
ow Setup
Other/Post

Some obvious observations

● Shading does not need to occur at same
temporal frequency as rasterization

● 30 fps for shading is adequate
● 60 fps for smooth camera, 90 fps for VR

The future: Async Shading

● With DX12, apparent that shading can be
completely decoupled from rasterization

● Using async compute
● Slow downs of shading would not impact FPS
● Will use GPU more efficiently

● Early tests are promising
● But will need to be DX12 exclusive

Challenges
● Dealing with large meshes which have varying density on

screen a challenge
● Need to apply stich mapping on more then just terrain

● Occlusion system would be needed for an FPS style game
● Not needed for strategy games

● Art pipeline requires that all objects be charted with
unique UV map

● But already had this requirement for art tools
● Integrating any screen space techniques

Obvious future directions

● With shading of scene captured,
● Second bounce lighting?

● Simplified rasterization step, cost of
shading is a non factor
● Point rendering?
● Stochastic reconstruction?

